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F L O W  O F  A L I Q U I D  A B O U T  A N O N U N I F O R M L Y  
HEATED D R O P L E T  W I T H  A R B I T R A R Y  T E M P E R A T U R E  
D I F F E R E N C E S  IN  I T S  V I C I N I T Y  

N. V. Malai  UDC 533.72 

The problem of flow of a liquid about a nonuniformly heated droplet at small Reynolds numbers is 
solved analytically with allowance for the effect of medium motion with arbitrary temperature differ- 
ences between the particle surface and the region away from it and the temperature dependence of the 
viscosity, represented in the form of a series. It is shown that in the approximation considered the 
nonuniformly heated droplet retains a spherical shape. 

1. Formula t ion  of the Problem. Consideration is given to plane-parallel flow of a viscous liquid with 
velocity Uo. about a sessile droplet of  a liquid with viscosity ktuq; the viscous liquid does not mix with the 
liquid of the droplet, and nonuniformly distributed sources (sinks) of heat of strength qp act in it. 

Unlike the flow studied earlier in [ 1-6], in this work consideration is given to flow about a droplet with 
arbitrary temperature differences between the surface of the particle and the region away from it with allow- 
ance for internal heat sources nonuniformly distributed throughout the volume of the particle with density qp. 
The temperature dependence of the viscosity, which is represented in the form of a series, is taken into account 
in the hydrodynamic equations, while the convective terms are allowed for in the heat-conduction equation. 

Oseen [7] and Praudman and Pearson [8] have shown for the hydrodynamic problem, and Acrivos and 
Taylor [9] for the heat problem, that far from a sphere the inertial and convective terms become of the same 
order as the terms of molecular transfer, and therefore the conventional method of expansion in a small pa- 
rameter yields a known error, since even in a second approximation it is impossible to rigorously satisfy the 
boundary conditions at infinity or to obtain a single exact solution that holds uniformly for the entire region of 
the flow. 

The present work seeks to determine, for this case, the velocity field and an expression for the resis- 
tance force that acts on a nonuniformly heated droplet with arbitrary temperature differences in its vicinity. 

It is assumed that the densities, thermal conductivities, and heat capacities of the liquids are constant 
outside and inside the droplet, the coefficient of surface tension is an arbitrary function of the temperature (t~ 
= 6(T)), and the coefficient of thermal conductivity of the droplet is much larger in magnitude than the coef- 
ficient of thermal conductivity of  the surrounding liquid. Flow about the droplet is rather slow (a small 
Reynolds number), and it retains a spherical shape (distortion of the shape will be considered below). 

The presence of  heat sources (sinks) inside the droplet leads to the fact that the average temperature of 
its surface can differ significantly from the temperature of the surrounding liquid away from it. The heating of  
the droplet surface has an effect on the thermophysical characteristics of the surrounding liquid and ultimately 
on the distribution of  the velocity and pressure fields in its vicinity. Of all the parameters of  liquid transfer, 
only the coefficient of  viscosity depends strongly on the temperature [10]. Therefore we use a formula that 
enables us to describe the viscosity variation in a wide temperature interval with any required degree of accu- 
racy (when Fn = 0 this formula can be reduced to the well-known Reynolds relation [10]): 

~liq=~too 1 +  n=IE Fn(~-~ -1  e x p - A [ ( ~ - I  . (1.1) 
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The liquid viscosity is known to decrease by an exponential law as the temperature increases [10]. An 
analysis of  the available semiempirical formulas has shown that expression (1.1) makes it possible to describe 
in the best manner the viscosity variation in a wide temperature interval with any required degree of  accuracy. 

The origin of  a spherical coordinate system r, 0, (p is selected at the center of the droplet. Within the 
framework of  the assumptions formulated the equations and boundary conditions for the velocity and tempera- 
ture will be written in the spherical coordinate system in the form [11, 12] 

= ~  ~tli q , divUli q = O ;  ++,+ { W  +.,+k)j (1.2) 

BpAUp = VPp, div Up = 0 ; (1.3) 

PliqCp (Uliq'V) Tli q = ~liqATliq, ATp = -- qp/~p ; ( 1.4) 

DTliq _ 0Tp u~q = UPr : 0 u~0q : U~o " (1.5) r = R ,  Tuq= Tp, ~.q ~r - ~ p  D r '  ' ' 

[ D l ~ q ) +  1 " DUrfir q] I ()(Y DTp [ r  ~ / ~ / +  1 DUPr]. 
'.q r [T) r D0 J+rDrp 

r---)oo, U l i q - - 4 U ~ , c o s 0 e r - U ~ s i n 0 e 0 ,  Pliq ---) p _  , Tr~q ---) T~ ; (1.6) 

r ~ 0 ,  IUpl ~oo p p ~  Tp~oO. (1.7) 

When X v >> ~ q  the flow about the droplet occurs with small temperature differences in its volume. In 
this connection, the coefficient of  viscosity of the droplet will be considered to be a constant (which is allowed 
for in Eq. (1.3)). 

In the boundary conditions (1.5) on the surface of the droplet (r = R) we allowed for the impermeabil- 
ity condition for normal velocity components, the equality of temperatures, the continuity of heat fluxes, the 
equality of tangential velocities for the internal and external media, and the continuity of tangential components 
of the stress tensor. 

The boundary conditions (1.6) hold at a large distance from the droplet (r ~ oo), and the finiteness of 
the physical quantities that characterize the particle when r--4 0 is allowed for in (1.7). 

We make Eqs. (1.2)-(1.4) and the boundary conditions (1.5)-(1.7) dimensionless by introducing the di- 
mensionless coordinate, velocity, and temperature in the following manner: Yk = xk/R,  t = T/T~,  and V = U/Uo~. 

At Re.. = (p,qU~,R)/B.. << 1 the incoming flow has only a perturbing effect, and therefore the solution 
of the hydrodynamic equations should be represented in the form 

V = V(°)+ e V(I)+... (e = Re=).  (1.8) 

The solution of the equation that describes the temperature distribution outside the droplet will be 
sought by the method of joined asymptoti c expansions [13]. The internal and external asymptotic expansions of 
the dimensionless temperature are represented as 

tli q (y ,0 )=  Z f n ( E )  ten(Y'0)' f o ( E ) =  l ,  
n=0 

(1.9) 
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e ~  

tli q ({, O) = E fn (E) ten (~, 0),  
n=O 

(1.10) 

where ~ = ey is the "contracted" radial coordinate [13]. It is required that 

(1.11) - - - - ) 0 ,  --~0 when e - ~ O .  

The boundary conditions lacking for the internal and external expansions follow from the condition of 
identity of their asymptotic extensions into a certain intermediate region 

tli q (y --) ~ ,  O) = tli q (~ --~ O, 0 ) .  (1.12) 

The asymptotic expansion of the solution inside the particle, as the boundary conditions on the droplet 
surface (1.5) show, should be sought in a form that is similar to (1.9): 

tp (y, 0) = L (E) ti. (y, 0) .  (1.13) 

n=0 

For the functions fn(e)  and ~(e) ,  it is assumed only that the order of their smallness with respect to e 
increases with n. 

With allowance for the contracted radial coordinate we have the following equation for the temperature 

tliq: 

and 

Pr -~- ()0 = A*t;q, tli q ---) 1 when ~ --) oo, (1.14) 

* 1). ( 1 . 1 5 )  Vli q ( ~ , 0 ) = e . + E ~ f i q  ( ~ , 0 ) +  . . . .  

Here A* is the axisymmetric Laplace operator obtained from A by substituting ~ for y, V~ = V*(~, 0), V~ = 
V0( ~, 0), th-q = tliq(~, 0), Pr = ~,cF/~,li q is the Prandtl number, and e z is the unit vector in the direction of  the z 
axis. 

The form of the boundary conditions (1.5)-(1.7) indicates that the expressions for the velocity compo- 
nents Vr and V 0 are sought in the form of expansions in Legendre and Gegenbauer polynomials [11, 12]. As is 
shown in [12], the force that acts on the particle is determined by the first terms of  these expansions; therefore 
we can write 

V r = G (y) cos 0 ,  V 0 = -  g (y) sin 0 ,  (1.16) 

where G(y) and g(y) are arbitrary functions that depend on the radial coordinate y. 
In investigating flow about nonuniformly heated droplets in a viscous medium we must take into ac- 

count the relation of the coefficient of surface tension to the temperature in addition to the dependence of the 
coefficient of dynamic viscosity on the temperature. This is caused by the nonuniformity of the distribution of 
the density of the heat sources qp in the droplet volume. In the work, an arbitrary form of the dependence of 
the coefficient of surface tension on the temperature was used. Furthermore, for the first time an attempt was 
made to allow for the effect of  the medium motion on the resistance force of  a heated droplet in a viscous 
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liquid. Therefore the formulas ultimately obtained are most general in character and hold for any temperature 
differences between the particle surface and the region away from it. 

2. Tempera ture  Fields outside and inside the Heated  Droplet. In finding the force that acts on the 
nonuniformly heated droplet and the velocity of its motion, we restrict ourselves to corrections of first order of  
smallness. To find them, we must know the temperature fields outside and inside the droplet. For this purpose, 
we must solve Eqs. (1.4) with the corresponding boundary conditions. 

The construction of the solution begins with determination of the zero term of the external expansion 
(1.10). In this case, the problem is obviously satisfied by the solution 

* ( 2 . 1 )  teo = 1. 

We find the zero term of the internal expansion (1.9). When ~ = 0 we have 

Ateo= 0 (2.2) 

with the boundary conditions 

Otto atio 
teo = tio, J~li'q "~y  = g -~y  when y = 1. (2.3) 

The general solution of Eq. (2.2) that satisfies the boundary condition (2.3) has the form 

(2.4) 

Here 7, Tn, and F~ are integration constants; Pn (cos 0) are Legendre polynomials [14]. 
We determine the integration constants 7, Tn, and Fn from the condition of joining, for which the ex- 

ternal solution must be expanded into a series in 9. Then the values of the constants are established from the 
requirement of correspondence of the behavior of the terms of the obtained series for ~ ~ 0 to the behavior of 
the terms of expansion (24) for y --4 oo. For the zero approximations, the joining is trivial; we obtain F0 = 1 
and Fn = % = 0 (n = 1, 2 . . . .  ). Consequently 

te0 (y) = 1 +-Y. (2.5) 
Y 

In the subsequent solution of  the problem, we must know the temperature field inside the particle. Sub- 
stituting (1.13) into the second equation of  (1.4), we obtain the following general solution for tp(y, 0) that 
satisfies the finiteness of the solution when y --4 0: 

tp ~, o) = ~ ~"ti. (y) P. (cos o), (2.6) 

where tin(y) is a function that depends on the radial coordinate and has the form 

1 

n 1 i ~ , ( y ) y n d y  + tin (Y) = BnY + n+l 
(2n + 1) y 0 

+ [Y I ~  dy- n+-'--'~ Y 1 n y ) 1 I i i in(y)  ynd ) 
2 n + l ' |  1 Y Y 1 / 

(2.7) 
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Here 
+1 

R 2 22n+1 I qpPn(c°sO) d(c°sO) 
Vn (Y) = - LoTo ° Y 2 

-1 

In what follows we will need the expressions for the functions ti0(Y) and til(Y): 

Y 1 y 
1 ~0 y I Ilt0dY ' (y) = 8o + 4 r= l q / V  + I y dy - 

V 1 1 
(2.8) 

1 fqpZdV+l[yi~lll 1 y 
til (y) = Bty + 4nR2Too ) ~ f  ~- ----~dy----ffflglYd) (2.9) 

V J [  1 y Y 1 

In (2.8) and (2.9) the integration is carried out over the entire volume of the heated droplet, and z = r cos 0. 
Since the temperature field inside the nonuniformly heated droplet is determined, we can find the inte- 

gration constants 7 and B0. We obtain the constants 7 and B0 that enter in (2.5) and (2.8) from the boundary 
conditions on the droplet surface (1.5). In our case, they will be written in the form 

Otto Otio 
y = 1 ,  = t o, = X v Oy . ( 2 . 1 o )  

Having substituted expressions (2.5) and (2.8) into (2.10), we have 

) ' = t s - l ,  B O = ( I - ~ R ) ( / s - l ) + l .  

Here ts = Ts/To.. Ts is the average temperature of the surface of the heated droplet, determined by the formula 

T s - l + 4  1 IqpdV. 
T°° /gR~"li'q T~' v 

(2.11) 

In (2.11), the integration is carried out over the entire volume of the heated droplet. 
When )qiq << )~v, in the coefficient of dynamic viscosity we can disregard the dependence on the angle 

0 in the system of droplet-liquid medium and consider that the viscosity is related only to the temperature 
te0(Y), i.e., gUq(qiq) -- gliq(te0)- With allowance for this, expression (1.1) acquires the form 

~liq=~tooexpI-A ~} [1+  n=l ~ Fn'Y~n] " (2.12) 

In what follows, formula (2.12) is employed to find the velocity and pressure fields in the vicinity of 
the heated droplet. 

Up to terms of the first approximation of the external expansion, from (1.10) we have 

tli q (~, O) = 1 +fl (E) tel (~, 0). 

It is seen that, to find the first approximation of the external expansion, we must first determine the explicit 
form of the coefficient f (e ) .  For this purpose, in solution (2.5) we pass to the external variable ~. Then it 
follows from (2.5) that, for ~(e) = e, 
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tl*iq (~, 8) = 1 + ~ tel (~, 0). (2.13) 

Substituting (2.13) into (1.14), allowing for (1.15), and retaining terms of the order of e, we obtain 

' ~ ~x x=cosO,  
(2.14) 

~ o o ,  tel--~0. 

The general solution of Eq. (2.14) has the form [15] 

tel = exp -~  ~c X Ln Kn+l/2 Pn (X), 
n=O 

I~'--I f~---~l "Pr~" " " "I+I12 exp - { ~-~}m~_ ~ (n+.), 

Here Kn+l/2(Pr~/2) is a modified Bessel function [15]. The arbitrary integration constants Ln must be 
determined as a result of joining, which, in this case, consists in comparing the behavior of the function (2.13) 
for ~ --~ 0 and the behavior of the function (2.5) for y --~ o~. It is easy to establish that L0 = "~Pr/~, Ln = 0 for 
n = 1, 2 . . . . .  Consequently 

* 0 ~ "/ex I'1 } (2.16) tel(k, 1 = ( P l ' ~ P r ~ ( x - l )  • 

We find the first approximation for the internal expansion. From (2.16) it is seen that fl(e) = e. Thus, 
we have the two-term intemal expansion 

tli q (y, 0) = teO (y) + e tel (y, e) .  (2.17) 

For tel and til in the two-term internal expansion we obtain from (1.4)-(1.7) the following problem: 

Pr Vr liq bte° by = Atel' 

1 !  l[y}~_~dy_liqllYdY], (2.18) til (Y) = BlY + 4~R2T~ ~gy 2 qpzdV +-~ [ 1 y Y 1 

~tel ~til 
y =  1, tel = t i l ,  ~hi-q-'~'-y =~,p by " (2.19) 

To determine the behavior of  tel( oo, 0), we join the two-term internal and external expansions 

(y, e) = teo (y) + e tel (y, e) ,  ({, e) = 1 + e ~ exp Pr~ (x - 1) fliq 9 

and as a result we have 
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co 
tel (oo, O) = ~- (cos 0 - 1), co = Pr T- (2.20) 

From (2.18) we see that, to find tel, we must first determine the velocity field, i.e., solve the hydrody- 
namic problem. 

3. Determination of the Resistahee Force. Substituting (2.12) into the hydrodynamic equation, allow- 
ing for (1.16), and separating variables, we obtain an equation that is similar to [16]. Ultimately, we have the 
following expressions for the components of the mass velocity and the pressure: 

~ q  (y, 0) = COS 0 (1 + A 1 G  1 +AIG2), V~ q (y, 0) = - sin 0 (1 + A 1 G  3 +A2G4)  , 

Pliq (Y, 0) = 1 + l]liq COS 0 (AIG 5 + A 2 G 6 ) ,  (3.1) 

V p (y, 0) = cos  0 (A 3 +A4y2) , V p (y, 0) = - sin 0(A 3 + 2Aay2) , 

pp (y, O) = p 0  + 10lip cos  0 y 2 A 4 ,  11 = ~t/~too, (3.2) 

where 

1 ~ '  A~ 1) Y I Y i 
; + 2 G I ,  , GI-=---- 7 G3=G ! • G 4 = G 2 + - G .  , .  

(n +3) y" y~ 2 - 

. (2) ~ g -I . (l) 
1 Lx n 0t [ 1 ] /x n . 

G 2 = - - E  ( n + l ) y n  3 E (n+3)  l n - - - I  yn 
Y n=0 Y n---0 y (n + 3) 2 ' 

Gs= G l + y  

G = Y G ~ I + y  
6 2 - 

I n 

+ 2 Sn yn 

112 1 n 

~l~:o Sn 7---- GI2I+ + 2 yn 

+ s n ; 

n=O 

+ s n aI2, 

n=O 

(3.3) 

n 

Sn = AFn-I - nFn - E Sn-kFk ' 

k=l 

Fo = 1, F n is equal to zero for n < 0. 
In (3.3), GI, Gk n, and G In are the first, second, and third derivatives of the corresponding functions with 

• (2) respect to y (k = 1, 2). The values of the coefficients A O) and /", n are found using the following recurrence 
relations: 

n 

dl(1) 1 [ { 4  n ( n + 5 )  Z ( n + 4 - k )  1 ) ( n + 5 - k )  
k=-I 

(2)[+ (3)1 k_(l) 

n > l ;  (3.4) 
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n{ 
• (2) 1 + Z ( n + 2  k ) [ ( n + 3 - k ) c x  (1) (2)1 . . . .  or/, j +  an (n + 3) (n - 2) 6°(n4)yn 

n 

~(3)[ ,k^(2) .,_ { -- 2k) o~ 1, - O~kl " Y ,an_k_2J , n > 3 . +~k ] t ' - ~ - k "  ~ Z ( 2 n + 5  21 k.(1) ] (3.5) 

k=0 

In calculating the coefficients A(n 1) and A~ ) by formulas (3.4) and (3.5) it must be taken into account 
that g )  = A~ 2) = 1, A(22) = 1, 4 2) = 4, 4 1) = ~ 4 )  = 1, c~) 3) = - 4 ,  13~z 1) = F n, ¢Z~ 2) = (4-n)Fn + AFn-1, 13~ 4) = 

An~n!, Ot = ---6]'2¢x(4)/5, ~(3) = 2AFn-1 - 2(2 + n)Fn, A 2 = ~60;~4) + 2(3o~ 4) + 2(3ot~ l) - o:~ 2)) + (z~3)]/4. 
Substituting (3.1) into (2.18), we obtain the following equation for the function tel: 

Z~tel = -- "~ G (y) COS O. (3.6) 
Y 

Here G(y) = 1 +AIGI +A2G2 and ¢0 = Pry. 
The solution for tel is sought in the form 

/el = ~ (Y) +'~e (Y) COS O, (3.7) 

with the boundary conditions 

(O O) 
~ ( y ) - - > - ~ - ,  "re(y)--->- ~- when y--~oo, (3.8) 

= 0 ,  Xe=C°nst when y = l .  

Substituting (3.7) into (3.6), we assure ourselves that the variables are separated and 

60 
{ ( y ) = ~ y ( l - y ) ,  

while Xe satisfies the equation 

dZxe 2 d x  e 2 o0 
+ 2 '~e =----~ G .  dy 2 y dy y y 

The general solution of Eq. (3.9) that satisfies the boundary conditions (3.8) has the form 

3 1 tel(Y, 0 ) = O )  ( l - - y ) +  +0)  E A k ' ~ k  COS 
2y k=-I 

(3.9) 

where 

1 ~ A(n I) 
xl (Y) =-7 ~ 

y (n + I) (n + 3) (n + 4) yn 

x2 (Y) y [2  6y 
A~ ) (z 

l n y - Z  (n2 1 ) (n+2)yn- - - "~  x 
n=2 - -  Y 

0, (3A0) 
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x E [(n + 1) (n + 3) (n + 4) In 1 -  3n 2 - 16n - 191 
n--0 Y 

(n + 1) 2 (n + 3) 2 (n + 4) 2 yn ' 

1 
17 3 = " ~ ,  A 3 = 1 . 

The integration constant F is determined from the boundary conditions on the droplet surface (2.19) 
and is equal to 

3 

f qpzdV-e° E Ak~Pk " 
V k = l  

~'liq ~ti'q Here 8 = 1 + 2-~-~ and tp = "c k - ~ xI; the superscript I denotes the first derivative with respect to y. 

Thus, in a first approximation with respect to e, we determined the temperature fields outside and in- 
side the nonuniformly heated droplet. Consequently, by employing the boundary conditions on the particle sur- 
face for the velocity components we can find the integration constants At, A2, A3, and A4 that enter in 
expressions (3.1) and (3.2). After calculating them the force that acts on the nonuniformly heated droplet is 
determined by integration of the stress tensor over the particle surface [12], and it will be comprised additively 
of  the force of  viscous resistance of  the medium F~, a force Fq that is proportional to the dipole moment of 
the heat-source density, and the force Fa that is caused by the motion of the medium: 

F = FII + g l g l )  ' lgl) = Fq + Fd ' (3.11) 

where F~t = -61r, R~U,4~te:; Fq = 6m~g~rq./ez; Fd = 61tRg~dez. 
The coefficients f~t, fq, and fd can be evaluated from the following expressions: 

fu= - Aexp(-Av) + N 4 , 8 = 1 + 2  V = - - n R  3 
3Up ) g '  3 ' 

A = N 1 + N2 3 g  8/.t~ Xp " Otp 

_ 4___RR exp{_Ay} G____L_ 1 3o  
S ~ f q -  9gpA £pT~8 atp z = r c ° s 0  (3.12) 

4 exp/-A~'-~l~"8)~ (1 q ~ l / b ~ ,  I f d =  btp G I  0) - , = --~l )-~t i *k = 2'~k +'~k k 1,2 ,  

is the unit vector in the direction of the z axis, and J = 1i[ qpzdV is the dipole moment of the ez heat-source 
V "  

density, v 
In evaluating the coefficients fix, fq, and fd, it must be taken into account that the superscript s denotes 

physical quantities taken at the average temperature of the droplet surface Ts, which is determined by formula 
(2.15); the functions ~1, ~2, GI, G2, N1, N2, N3, and N4 are taken at y = 1 (N4 = 2G~+G~, N1 = 
G1GI2 - -  G2G], N3 = -GI1, N2 = G2(2Gal + G111) - GI(2G~ + G~I)). 

In the case where the heating of  the droplet surface is rather small, i.e., the average temperature of the 
droplet surface differs slightly from the temperature of the surrounding medium at infinity ('~ ~ 0), the depend- 
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ence of the coefficient of viscosity on the temperature can be disregarded, and then Gl = - 1 / 3 ,  G] = 1, G] I = 
-4, G2 = -1 ,  G I = -1 ,  G2 n = -2 ,  N1 = 2/3, N2 = 2, N3 = -1,  and N4 = -2.  

The first formula of (3.11) enables us, with the known volume distribution of  the heat sources, to take 
into account the effect of the medium motion on the resistance force that acts on the nonuniformly heated 
droplet with arbitrary temperature differences between the particle surface and the region away from it with 
allowance for the exponential form of  the temperature dependence of the viscosity. The above formulas (3.11) 
are the most general in character. 

It is also seen from (3.11) that the magnitude and direction of the total resistance force F (1) will be 
affected by the magnitude and direction of the dipole moment of the heat-source density. 

If, for example, the droplet surface is heated due to absorption of electromagnetic radiation, the dipole 
moment can be both negative (most of  the heat energy is released in the portion of the particle that faces the 
radiation flux) and positive (most of  the heat energy is released in the shadow portion of  the particle). This 
depends on the optical properties of the droplet. Since the surface tension for the majority of  liquids decreases 
with the temperature, i.e., Oo/3tp < 0, and the value of J can be both positive and negative, the magnitude of 
the total resistance force F (1) will also change. 

Furthermore, from the formulas obtained it is seen that this force depends substantially on the thermal 
conductivity of  the droplet. When )~p tends to infinity the resistance force tends to zero for a fixed magnitude 
of the dipole moment of the beat-source density. 

4. Dis tor t ion  of  the Shape  o f  the Surface. The shape of the droplet surface is not known in advance 
and must be determined from the solution, and therefore the boundary conditions (1.5)-(1.7) for the problem in 
question are set on an unknown boundary. Since we restrict ourselves to corrections of  first order of smallness 
in e, we can write 

o = ~o + 8G(l) • (4.1) 

where c0 is the zero term in the expansion of the function G(x) in Legendre polynomials Pn(x), x = cos 0. 
The shape of  the droplet surface is sought in the form [ 11] 

r=R (1 +8~) .  

We expand the sought quantities oO)(x) and ~(x) in series in Legendre polynomials: 

(4.2) 

o o  ¢ o  

o =  E o , P , ( c o s 0 ) ,  ~ =  E ~ ° n ( c ° s 0 ) "  
n=O n=O 

(4.3) 

From the condition of constancy of the droplet volume it follows that ~ = 0. Since the origin of the 
coordinate system is located at the center of mass of the heated particle, then 

• sin 20dO = 0 

0 

(4.4) 

and, consequently, 

~1 = 0 .  (4.5) 

In solving the problem, we did not allow for the boundary condition for the normal components of the 
stress tensor. Accurate to terms that are proportional to 8, the boundary condition for the normal stresses on the 
droplet surface can be written in the form [12] 
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m 313 3£ 
Fig. 1. Coefficients tp~t = f~/~,  (pq = fq/fq, and tPd = f~d VS. average tem- 
perature of the particle surface Ts. 

CY(1) (4.6) (Ynfiq(1) -- O~n 1) = O'0/-/(1) -{'- 2 

1 1 2 e/_/(l) Here 2H = ~1 + R-~ = R + , RI and R 2 are the principal radii of curvature of  the droplet surface; H is the 

average curvature of the surface, which, in the axisymmetric case, is equal to [12] 

 4.7, 2 1 ~ in 0~-~ 
/ _ / ( 1 ) = _ ~  R s i n 0  i)0 

Using (4.3) and (4.5), we represent expression (4.7) as 

o o  

/4(1)= Z ( n + 2 ) ( n - l )  
R 

n=2 
~nPn (cos 0) .  (4.8) 

Thus, allowing for (4.8), we obtain from (4.6) that in the approximation in question the nonuniformly 
heated droplet retains a spherical shape in its motion. 

To illustrate the dependence of the force that acts on the nonuniformly heated droplet, Fig. 1 gives 
curves that relate the coefficients tp~t = fp./~, ~)q = fq/j~qq, and q)d = fo/A to  the average surface temperature Ts 

• - - ' 5  • 

for large mercury droplets of radius R = 10 m that move in water at Too = 293 K. The values of the viscosity 
are described accurate to 0.7% by the coefficients A = 5.4348, F1 = -1.4249, and F = 8.6798; Oo/OT = 
-2-10 -4 N/(m-K), Pr = 6.75; ~ = frt ] rs=303K; fq = fqlr~=303K; fd = fd ] rs=303K- 

N O T A T I O N  

Bliq, dynamic viscosity of the liquid; qp(r, 0), density of the heat sources inside the droplet, which de- 
pends on the spherical coordinates r and 0 (0 < 0 < ~); tp, azimuthal angle; c ,  coefficient of surface tension of 
the droplet; la~ = laliq(T~); T~, temperature of  the liquid away from the particle; A, const; Fn, const; T, P, p, 
cp, and ~,, temperature, pressure, density, heat capacity at constant pressure, and thermal conductivity; U, mass 
velocity; U~, velocity of the plane-parallel flow of the liquid about the droplet (U~ ][ OZ); x k, Cartesian coordi- 
nates; R, radius of the droplet; Uk, components of  the mass velocity U; er and e0, unit vectors of the spherical 
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coordinate system. Subscripts and superscripts: liq and p, liquid and droplet, respectively; oo, values of  physical 
quantities taken at locations away from the droplet (at infinity); i, internal; e, external; d, motion; s, average. 
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